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Calculations of force and torque on a sphere with inhomogeneous slip boundary conditions are presented. A
theoretical approach introduced previously is employed to explicitly explore two types of azimuthally sym-
metric boundary-condition patterning of high practical importance. The first is a discontinuous binary surface
while the second involves continuously varying slip patterned in stripes, with arbitrary periodicity. These
geometries mimic anisotropic spheres, as well as superhydrophobic surfaces applied to a sphere. The dynamics
apply for unbounded uniform flow and pure rotational flow of a Newtonian fluid at low Reynolds number. In
unbounded uniform flow, torque is maximized for an ideal Janus sphere with a discontinuous equatorial
transition between regions of slip and no slip.
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I. INTRODUCTION

When the nonslip boundary condition �NSBC� applies at
the surface of a solid sphere in unbounded uniform Newton-
ian flow, the sphere experiences zero torque along with a
drag force given by the well-known Stokes formula. The
dynamics of such a sphere change when there is uniform
nonzero slip over the surface, creating a “lubrication” force,
or reduction in the drag force �1�. Slip occurs when the fluid
immediately adjacent to a solid surface has nonzero tangen-
tial motion relative to that surface, usually characterized by
slip “length” b �2�. In addition to uniform spheres, full first-
order dynamics have been calculated for uniform slip on a
nearly spherical particle �3� and nearly uniform slip on a
spherical particle �4�. In the latter case, it was predicted that
a sphere with asymmetric slip boundary conditions can ex-
perience a torque in uniform flow. This result has important
implications for two fields of high current interest in nanof-
luidics and microfluidics: fundamental studies of nonzero
surface slip and research into asymmetric spherical particles,
typified by “Janus” spheres.

Modern reviews �2,5� have summarized experimental vio-
lations of the NSBC �b=0�, which was assumed to apply
universally to Newtonian fluids at an impermeable solid sur-
face for most of the 20th century. It has recently become
clear that Newtonian slip occurs in two distinct regimes,
separated by length scale. “Intrinsic” slip yields slip lengths
of the order of 10 nm at molecularly smooth hydrophobic
surfaces �6,7�. “Effective” slip, which can generate slip
lengths of the order of microns or larger, concerns measure-
ments of fluid flow some distance from a surface, indepen-
dent of the phenomenology close to the surface itself. Effec-
tive slip is most commonly used to describe
ultrahydrophobic or superhydrophobic surfaces. These sur-
faces occur naturally or are engineered in various forms
�8–11�, and are typically characterized by regular or irregular
patterns of surface roughness, along with hydrophobicity.
Some regular patterns have been explored theoretically, in-
cluding flow over planar surfaces consisting of a regular pat-

tern of stripes or ribs �8,12–15�, and flow through a cylinder
with similar internal surfaces �16�.

Fabrication of small anisotropic particles is a very topical
area that has been placed into a conceptual framework by
Glotzer and Solomon �17�. Small particles of spherical ge-
ometry are reasonably easy to fabricate due to minimization
of surface energy, and are ubiquitous in many branches of
fluidics research and applications. Janus spheres are a special
type of anisotropic sphere for which the properties of one
hemisphere differ from those of the other. The range of
preparation pathways and physical characteristics of Janus
particles is strikingly diverse �18–34�, covering particle sizes
from 2 nm functionalized nanoparticles �20� to 200 �m col-
loidal dispersions �21�. Several types of Janus particle are
amphiphilic, consisting of surface areas that are hydrophobic
�therefore potentially exhibiting intrinsic slip� and hydro-
philic �18,23,25,26,30,35�. Areal surface coverage for a bi-
nary particle can be far from equally divided, and has been
actively controlled in some cases �26,30,33�. Well-defined
families of particles with ternary �33� or periodic �17,29�
surface patterning have also been produced. Application ar-
eas for Janus particles match the diversity of the particles
themselves �18,19� but often relate to their role at colloidal
boundaries �25�, as self-assembling components in complex
superstructures �17,27�, or in various optofluidic roles
�21,22�. Janus particles can be manipulated using externally
applied fields �24,35� but the dynamics introduced in �4�
simply apply to any Janus particle in a Newtonian fluid.

The present work explores the dynamics of spheres using
the general theoretical approach that was introduced in �4�,
and is recounted in Sec. II. The remainder of the paper ex-
tends that general approach to specific asymmetric surface
patterns characterized by variable slip length. Force and
torque are presented for spheres in unbounded uniform flow
as well as purely rotational flow using two types of boundary
condition. The first consists of two homogeneous surface ar-
eas separated by a slip length discontinuity. The second ex-
plores continuously varying slip with pattern periodicity.
Boundary-condition patterns are azimuthally symmetric and
mimic the patterning of practical Janus-like spheres, as well
as superhydrophobic surfaces applied to a sphere. In the
course of this work, two of the anisotropy “dimensions”
identified in Glotzer and Solomon’s framework �17� are ad-*FAX: �64� �0�4 931 3117; g.willmott@irl.cri.nz
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dressed: surface coverage �patchiness� and pattern quantiza-
tion, as applied to the surface of spheres.

II. BACKGROUND

The analysis detailed in �4� concerns an impermeable
sphere in an incompressible Newtonian fluid at low Rey-
nolds number. The slip boundary condition is defined in the
conventional manner for the rest frame of the wall �2,36,37�,

v� = bn · ��v + ��v�T� · �I − nn� , �1�

where v� is the component of the fluid velocity field v which
is tangent to a solid surface, n is the unit normal to the
surface, and the parameter b is the slip length. For an inho-
mogeneous boundary condition on a spherical surface, b can
be replaced by the quantity bf�� ,��, where � and � are
spherical polar coordinates. The magnitude of f�� ,�� is of
O�1�, and it can be expanded in terms of surface spherical
harmonics, such that f�� ,��=�k=0

� fk�� ,��. When b is small
compared with sphere radius a, then b�b�, where b� is the
slip length corrected for surface curvature �37�. In this limit,
the perturbed flow field around the sphere, and the force and
torque on the sphere, can be expanded in powers of �=
−�b� /a�, where ����1. For example, the force on a sphere
can be written as

F = F�0� + �F�1� + O��2� . �2�

Following �3�, the full resistance tensors in a fluid of vis-
cosity �, where the sphere is subjected to an unbounded
uniform flow U and a rotational flow �, are

	F�i�

T�i� 
 = 	 6	�a��i� 6	�a2D�i�

6	�a2C�i� 8	�a3��i� 
 · 	U

�

 . �3�

F�0� is equal to the well-known Reynolds drag formula for
unbounded uniform flow. The general first-order solutions
are �4�


ij
�1� = �ij f0 −

1

10
�i� j�r2f2� , �4�

Cij
�1� = Dij

�1� = − �ijk�k�rf1� , �5�

and

ij
�1� = − 3	�ij f0 −

1

10
�i� j�r2f2�
 , �6�

where �ij is the Kronecker delta, �ijk is the Levi-Civita per-
mutation symbol, and tensor components are given in a Car-
tesian frame.

III. BINARY DISCONTINUOUS TRANSITION

The first type of boundary-condition pattern explicitly
considered concerns an abrupt �discontinuous� junction be-
tween homogeneous surface areas �Fig. 1�,

f��,�� = �� �0 � � � ��� ,

1 ��� � � � 	� .
� �7�

This boundary condition mimics several types of sphere re-
alized in practice, and is particularly instructive in cases

where binary surface coverage can be measured and con-
trolled �26,30,33�. Specifically, the value of �� is related to
the parameter � from �38� by ��=180−�; this is not the
same as the contact angle at oil-water interface �26,38�.
Working in notation from �33�, �� is expressed using
R2 sin2 ��=hM1hM2. For an ideal Janus particle, in which
there is a discontinuous transition between the NSBC ��
=0� and slip length b� at the equator ���=90�, the specific
force and torque in unbounded uniform flow were calculated
in �4�, and are denoted below by FJanus and TJanus, respec-
tively. The previous approach is now extended to include
variations in � and ��, by expanding Eq. �7� in normalized
Legendre polynomials, so that

gk��� = �kYk��� , �8�

where

Yk��� = 	2k + 1

4	

1/2

Pk�cos �� , �9�

�k = 
−1

1

Yk���g���d�cos �� , �10�

and Pk is the Legendre polynomial of order k. Equations
�3�–�6� directly relate forces and torques in unbounded uni-
form flow and rotational flow to the spherical harmonic
terms. In unbounded uniform flow parallel to the x axis, con-
sidering terms up to first-order only,

�F�1� =
b�

2a
6	�aUx�1 + cos �� + ��1 − cos ����x̂ , �11�

and

�T�1� = −
b�

a

9	�a2Ux

2
�1 − cos2 ����1 − ��ŷ . �12�

Equations �11� and �12� are plotted in Figs. 2 and 3, re-
spectively, with forces and torques normalized relative to the
ideal Janus particle. The lubrication force is double the Janus
result when the particle is uniformly slip coated ��=1 or
��=0°�. Lubrication falls to zero �the NSBC result� when
�=1 and ��=180°. For ��1, the magnitude of the force
depends on the areal coverage and the size of the slip length
parameters �b� and �� rather than anisotropy. In contrast, the
torque applied to the sphere depends on the degree of aniso-

FIG. 1. �a� Cartesian �x ,y ,z� and spherical polar �r ,� ,z� coor-
dinate axes. The origin is at the center of a solid sphere of radius a.
�b� The asymmetric geometry of the slip boundary condition from
Eq. �7�. Reproduced from �4�.
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tropy, being maximized when the surface is divided in half
���=90°� and the difference in slip lengths between the two
areas is maximized ��=0�. As expected, there is zero torque
when the sphere is uniformly coated ��=1 or ��=0° ,180°�.
In the case of purely rotational flow �, Figs. 2 and 3 apply,
respectively, to torques and forces, where the vertical axis is
given by the first-order term divided by the ideal Janus re-
sult. Therefore the degree of anisotropy determines the force
in rotational flow, whereas the torque depends on total areal
coverage of slip.

IV. CONTINUOUS PERIODIC PATTERN

The second specific set of boundary conditions �Fig. 4�,
also invariant in the azimuthal ��� coordinate, describes con-
tinuous periodic variation in slip length over the spherical

surface. For cases A and B, respectively, the function f�� ,��
as defined above is replaced with

g = sin2	n�

2

 , �13�

and

h = cos2	n�

2

 , �14�

where n is a real number �0.
Figure 4 indicates geometric dependence of slip on n. The

value n=0 corresponds to the NSBC for case A and a sphere
with homogeneous slip length b for case B. When n=1, the
slip length in both cases varies continuously from no slip at
one pole to full slip at the other. This geometry closely ap-
proximates the ideal Janus sphere but differs significantly
from the Janus configuration considered in the previous sec-
tion because the slip length varies continuously across the
surface. As n increases, the periodicity of slip and no-slip
regions increases; the sphere becomes striped. This geometry
approximates two distinct practical situations. First, engi-
neered superhydrophobic surfaces often consist of periodic

FIG. 5. Forces and torques on spheres with continuously vary-
ing surface patterning. Cases A and B refer to Eqs. �13� and �14�,
respectively, and the vertical axis is normalized relative to results
for a discontinuous Janus particle �4�.

FIG. 2. The first-order force on a Janus sphere in unbounded
uniform flow �Eq. �11��, plotted as a function of angular coverage
�deg�, with a discontinuous boundary condition given by Eq. �7�.
The force is normalized relative to the result for an ideal Janus
sphere ��=0, ��=90�. This plot also applies to torques in purely
rotational flow, in which case the vertical axis is T�1� /TJanus

�1� .

FIG. 3. The first-order torque on a Janus sphere in unbounded
uniform flow �Eq. �12��, plotted as a function of angular coverage,
with a discontinuous boundary condition given by Eq. �7�. The
torque is normalized relative to an ideal Janus sphere ��=0, ��
=90�. This plot also applies to forces in purely rotational flow, in
which case the vertical axis is F�1� /FJanus

�1� .

FIG. 4. Examples of continuous periodic surface slip geom-
etries. Cases A and B refer to Eqs. �13� and �14�, respectively, and
shading is indicative of relative slip length. The direction of un-
bounded uniform flow along the Cartesian x axis �Ux� is indicated.
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slip and no-slip ridges. Second, Janus-like �17,29� and ter-
nary �33� particles can have well-defined and controlled pe-
riodicity.

Using the Legendre polynomial expansion as in the pre-
vious section, the first two spherical harmonics of g are

g��� = g0��� + g1��� + . . . =
2n2 − 1 + cos�n	�

4�n2 − 1�

+
3 cos ��cos�n	� − 1�

4�n2 − 4�
+ . . . . �15�

In unbounded uniform flow of magnitude Ux parallel to the
Cartesian x axis, the forces for cases A and B are, respec-
tively,

�FA
�1� =

b�

a
6	�aUx	2n2 − 1 + cos�n	�

4�n2 − 1� 
x̂ , �16�

and

�FB
�1� =

b�

a
6	�aUx	2n2 − 3 − cos�n	�

4�n2 − 1� 
x̂ . �17�

The equivalent first-order torques are

�TA
�1� =

b�

a

9	�a2Ux

2
	 cos�n	� − 1

n2 − 4

ŷ = − �TB

�1�. �18�

Equations �16�–�18� are plotted as a function of n in Fig.
5, with the vertical axis again normalized relative to the ideal
discontinuous Janus sphere. The torque on a sphere is zero
�due to symmetry� when n is an even number, and maxi-
mized when n is close to one. An extreme value in the lubri-
cation force occurs near n=1.5 so there is an interesting re-
gion 0.5�n�1.5 in which torque is nearly maximized and
lubrication force varies widely, and could be tuned depend-
ing on the application considered. At large values of n, the
force converges to the ideal Janus result, and the torque con-
verges to zero because there is lack of asymmetry. As with
the discontinuous boundary condition, the normalized force
in purely rotational flow is equal to the normalized torque in
unbounded uniform flow, and vice versa, for both cases A
and B.

Figure 6 illustrates some important aspects of the predic-
tions above. In the case of irrotational flow, there is a method
for calculating v�1� by explicitly deriving analytical spherical
harmonics �1�, allowing flow lines to be plotted. The velocity
field is consistent with the calculated dynamics. Torque
arises in irrotational flow only when there is asymmetry of

(b)(a) (c)

(d) (f)(e)

FIG. 6. Examples of predicted flow fields and dynamics in the plane y=0. The flow field for a sphere with the NSBC in unbounded
uniform flow parallel to the positive x direction is plotted in �a�. For a slip boundary condition, this flow field is modified by a first-order
correction, which is plotted ��b�–�d�� for various instances of continuous slip boundary conditions and �e� for an ideal Janus particle. In
figures �b� through �e�, vectors are proportional to �v�1�, with consistent scaling of magnitude between figures. The arrows representing v�0�

in figure �a� have been shortened by a factor of b /a. �f� demonstrates the direction of the force on an asymmetric sphere �case B, n=1�
rotating at angular velocity � in a quiescent fluid.
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the boundary condition and flow field. Flow asymmetry is
greater for the discontinuous boundary condition than the
analogous continuous case, leading to greater torque. For the
discontinuous asymmetric sphere �Fig. 6�e��, the first-order
flow vector points in the negative x direction, opposing the
incident flow, near the nonslip surface. The size of the �v�1�

vectors, and hence of the lubrication force, is much reduced
for n=2 in comparison with n=0. Figure 6�f� demonstrates
the direction of the force on a rotating asymmetric sphere.
Due to linearity of the equations, superposition applies to the
dynamics of a sphere in a flow with unbounded rotational
and irrotational components.

V. DISCUSSION AND CONCLUSIONS

The calculated dynamic effects could be intentionally uti-
lized in future applications of Janus spheres, and could have
implications for currently envisaged applications. The
torque, which allows manipulation of particle orientation in
flow, is greatest when the boundary-condition asymmetry
relative to the flow direction is maximized. Asymmetry is
greater for a relatively sharp transition between slip and
NSBC-surfaced hemispheres than for more continuous sur-
face variation. In the range 0.5�n�1.5, a particle experi-
ences large torque and could have a lubrication force any-
where between 0.6 and 1.4 times the ideal Janus sphere
value. In purely rotational flow, the role of asymmetry ap-
plies to force rather than torque so that a highly asymmetric
particle can experience a linear impulse.

For superhydrophobic and inhomogeneous surfaces con-
sisting of periodic stripes, there are important dynamic ef-
fects on the sphere when surface periodicity is of the same
order of magnitude as the sphere �n�5�. Note that for small
values of n, the superhydrophobic Cassie state could be dis-
torted or difficult to achieve in practice due to curvature of
the spherical surface. For higher pattern periodicity, the lu-
brication force is present but there is little torque on the
sphere; at n=5, the local torque maximum is �10% of the
value for the ideal Janus sphere. We can therefore suggest a

regime �n�5� in which striped patterning does not signifi-
cantly affect the sphere dynamics. In this regime, the effec-
tive slip length of the surface should be considered, and the
superhydrophobic patterning could itself be applied in geo-
metrical surface patterns. There is the possibility that spheres
patterned in stripes using Janus-like techniques �17,29� could
give rise to a superhydrophobic surface, and therefore an
effective slip length orders of magnitude higher than the in-
trinsic slip length. Note that the analysis accounts only for
surface forces; nonspherical surface geometry due to ridges
could cause other dynamic effects.

As with the general phenomenon of slip, the role of length
scales is important in the present work. Although the limit
b�a was used in the present analysis, this is not a physical
limitation. The prospect of a sphere patterned with a super-
hydrophobic surface of effective slip length greater than the
sphere radius is interesting. The importance of Brownian
motion, which limits slip-induced manipulation as explored
in �4�, is also dependent on length scale. Thermal effects do
provide a physical limitation to the utility of engineered Ja-
nus particles. Enhanced effective slip lengths caused by
high-periodicity patterning should be comparable to far-field
slip lengths in analyses of superhydrophobic surfaces else-
where �8,12–15�. It is possible that the dynamic effects
could, to some extent, be effective at higher Reynolds num-
ber, and therefore macroscopic systems.

The present work predicts dynamic effects which are, as
yet, untested in practice. It is hoped that the analysis will add
to the design toolbox of the microfluidic or nanofluidic en-
gineer. The manipulation method considered only requires
application of directional �or rotational� flow but dynamic
effects could also be considered in conjunction with manipu-
lations using electric fields �24,35� and experimental tech-
niques for investigating Janus sphere dynamics �22�. Future
analytic or computational work could include azimuthal
asymmetry, rotation, asphericity, and surface roughness �23�,
bounded or nonuniform flow, or the regime in which b�a.
There is also potential for further exploration of analytic ap-
proaches to superhydrophobic surfaces.
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